RMock user guide

Daniel Brolund <dani el . br ol und( at) agi cal . conp

Joakim Ohlrogge <j oaki m ohl r ogge(at) agi cal . con®
Copyright © 2005-2007 Agical AB

Table of Contents

1. The RMOCK 2.0.0 USEY QUITE .....uieiiiieeeeit ettt ettt et e e e e e e e e e e enaas 1
0 1Y oo T 1o o PR 2
1.2, GEING SEAMEA ... ettt ettt e et e et et e e e et a e e eaa e eaes 2
R R I 4 T= T o= = o PPN 2
I I == = = PP 2
1.3.1.1. Using expressions With @SSertThat ..........ocvvuniviiiiiii e ee e e e e e e e eaes 2
1.3.1.2. Assertion failed feedback ...........cooveiiiiii 3
1.3.2. EXpect exception tO DETNIOWN .......iiiii e 3
1.3.2.1. How to use expect ThatEXCeptioNTRIrOWN .......oeuiiiii e 3
T T ==\ o 1Y 3
1.3.3.1. Using the constraint factory of RMOCKTESICASE ........vevvueiiiiiiiii e e 5
1.3.4. MocKing @and VENTYING .. .o.unieiiii e e 5
1.3.4.1. The simplest thing that could possibly be mocked ..o, 5
1.3.4.2. Setting UP EXPECLALIONS ... . eeeetieeeeeti ettt ettt e et e ettt e et e et e e e e e e e e e eaa e eeenens 6
1.3.4.3. NBMING MOCKS ...ttt ettt et e et e et e e et e e et e e aa e e et e eebn e eeanaaenes 7
1.3.4.4. Unexpected invoCation faIlUME ............coeeiiiii e 7
1.3.4.5. Unsatisfied eXpectation fallure ...........couiiiiiiiiiii e 8
1.3.4.6. Modify the expectation MUItIPHCITY ........oeieeieii i e 8
1.3.4.7. EXPECt MUILIPHICITY FANGE .. .ceeeeiieeeei ettt e et e e e eeaens 9
1.3.4.8. Modifying the arguments of the eXPECLaioN ...........ccceuuiieiiiiiieiii e 10
1.3.4.9. How to modify only SOME argumMENES ............oieuiiiiiieii e e e 10
1.3.5. How to make amock throw an eXCEpLion ............cccoiiiiiiiiiii e 11
1.3.5.1. Throw an exception from amethod without parameters ............cocoeviveiiieiineiiii e, 11
I J SIS < o 1o PPN 11
1.3.6.1. The defallt SECHONS ... .ccuiiiieiii e e e e e e et e e e e e eeanaees 11
1.3.6.2. Defining an Orderet SECHION ........ciiiriieiiii et 12
1.3.6.3. USiNg the defaultS SECLION .......ccuuiiiiii e e e 13
1.4. The different types of teSt-dOUDIES ..........ooiiniiiii e 14
O == 0T T ) = o= o PR 14
1.4.2.1. DEfaUIt FEIUMN VBIUES ....covuieeeiii et et e et e e et e e e eeaanaeeees 14
O A 11 = o= L (o PSPPSRI 14
1.4.2. Test dOUDIES FOr ClASSES ... eeuniiit ettt e e e e e ea e 15
1.4.2.1. Mocking aclass with adefault CONSITUCION ..........ooeuiiiiiii e 15
1.4.2.2. Intercepting classes with adefault CONSIIUCION .........c.oiviiiiiiii e 16
1.4.2.3. Forwarding invocations to the implementation ............ccoooiiiiiii i 16
1.4.2.4. Mocking classes with different non default CONSIrUCOrS ........ovvvvnvveiiiiii e 17
1.4.2.5. Mocking classes with overloaded CONSIIUCIONS .........ccouuiiiiiiiiiiiiiiii e 18

AL APPENAIX ettt ettt e e e e e 19
N R 1 PSP 19

1. The RMock 2.0.0 user guide




RMock user guide

1.1. RMock in short

RMock is a Java based framework that supports interaction based and state based testing through a variety of fea
tures. Both expectations and asserts use the same powerful matching framework, which provides avast library of ex-
pressions ready-to-use, as well as the possibility to easily add your own custom ones.

For interaction based testing, RMock can create several different types of test-doubles to enable testing of one class
at atime by "mocking" out its dependencies. The expectations on the test-doubles can be setup in a variety of ways,
of which some are nested strict or loose ordering, multiplicity control, exception throwing and more.

To improve your productivity the error messages of RMock are very clear and explicit. All expectations are presen-
ted with their satisfaction state, and for more nasty problems some advice for your code is offered.

1.2. Getting started

It is assumed that you are somewhat familiar with the following:

-Java

-JUnit

-Test-driven development

-Mock objects

Download the following:

-The latest rmock-2.0.0.jar (http://sourceforge.net/projects/rmock/)

-Thejunit-3.8.1.jar (http://www.ibiblio.org/maven/junit/jars/junit-3.8.1.jar)

-The cglib-nodep-2.1_2.jar (http://www.ibiblio.org/maven/cglib/jars/cglib-nodep-2.1 2.jar)
-JDK1.3.1 or later (http://java.sun.com/downloads)

Install the JDK and put the downloaded jars on your development classpath

1.3. The basics

This section goes through the basics of RMock. It should give you enough information to be productive with RMock
and to be able to interpret the different types of feedback RMock gives.

1.3.1. Assert that

In traditional state-based testing the assertion is essential. In the standard RMockTestCase assertXxxx from the
TestCase of JUnit can be used, but RMock encourages you to use the assertThat(...) method instead. The reason for
thisisthat it is more flexible, more extensible and more expressive in its error reports.

1.3.1.1. Using expressions with assertThat
The assertThat(...) can be used to make powerful assertions:

assert That ( fal se, is.FALSE );

assertThat ( true, is.TRUE );

assertThat( true, is.not( Is.FALSE ) );

assertThat ( "Hello", is.eq( "Hello" ) );

assertThat( "Hello", is.instanceOf( String.class ) );

2



RMock user guide

assert That ( "Hel | o" .containing("ell") );
assert That ( "Hel | o" .endi ngWth("ello") );
Hel | o"
i
i
i

s
s

assert That ( ' s.startingWth( "Hell" ) );

(

(

(

assert That ( 666, is.g 665 ) );
assert That ( 666, is.I 667 ) );
assert That ( 666, is.e 666 ) );

oj ect obj ect = new Obj ect ();
assert That ( object, is.same(object));
assert That ( object, is.not( is.same(new oject())));

1.3.1.2. Assertion failed feedback
The simplest form of feedback that RMock provides is whether an assertion fails or passes.

In the example below we make an assertion than can't pass.
assert That (true, is.FALSE);
RMock reports this error condition by throwing this exception

ASSERTI ON FAI LED!

<true>

does not pass the expression:
<i sFal se(<nul | >) >

Still in setup state! (startVerification has not yet been call ed)
0 expectation(s) have not yet been matched
(indicated by '->'" in the listing bel ow)

Unor dered section:root {
Unor dered section: main {

Unor dered section:defaults {

1.3.2. Expect exception to be thrown

Often when testing a class a certain exception should be thrown by that class. To avoid repetitive and boring try-
catch blocks, RMock allows you to specify the expected exception using an expression.

1.3.2.1. How to use expectThatExceptionThrown

Here we create a String-array with two elements, but we try to access an element outside that array. The implement-
ation should then throw an Arrayl ndexOutOfBoundsException.

String stringArray = new String {"a", "b"};

Cl ass exceptionCl ass = Arrayl ndexQut o] BoundsExcept i on. cl ass;
expect That Except i onThr own(is.instanceX (exceptiond ass));
String string = stringArray666;

By just declaring what exception is expected, RMock handles the boring try-catch and provides you with a nice error
message if the expected exception isn't thrown.

1.3.3. Expressions




RMock user guide

Every RMockTestCase has a member variable named is. This variable is actually a ConstraintFactory, a helper to
create common constraints to use in assertions, method call validations, and more.

A constraint must implement this interface:
i nterface Constraint :
com agi cal . r nock. cor e. mat ch. Expr essi on

getName( ) : String
get Reference( ) : Reference

As seen above al constraints are expressions. The expression definition is shown below

i nterface Expression

and( Expression ) : Expression

or( Expression ) : Expression

xor ( Expression ) : Expression

passes( Object ) : bool ean

descri beWth( ExpressionDescriber ) : void

When using constraints you typically create them using the standard constraint factory provided by RMock:

i nterface ConstraintFactory :

{
It( double ) : Expression
It( byte ) : Expression
It( short ) : Expression
[t( int ) : Expression
It( long ) : Expression
It( Object ) : Expression
It( char ) : Expression
It( float ) : Expression
eq( double ) : Expression
eq( float ) : Expression

eq( char ) : Expression

eq( long ) : Expression

eq( boolean ) : Expression

eq( Object ) : Expression

eq( short ) : Expression

eq( int ) : Expression

eq( byte ) : Expression

not ( Expression ) : Expression
| e( short ) : Expression

le( int ) : Expression
| e( char ) : Expression
le( long ) : Expression
le( byte ) : Expression
| e( double ) : Expression
le( float ) : Expression
le( Object ) : Expression
ge( float ) : Expression
ge( double ) : Expression
ge( byte ) : Expression
ge( short ) : Expression
ge( long ) : Expression




RMock user guide

ge( Object ) : Expression

ge( int ) : Expression

ge( char ) : Expression
containing( String ) : Expression
same( Object ) : Expression

i nstanceO( Class ) : Expression
gt( short ) : Expression

gt( float ) : Expression

gt( long ) : Expression

gt( Object ) : Expression

gt( byte ) : Expression

gt( int ) : Expression

gt ( double ) : Expression

gt( char ) : Expression
startingWth( String ) : Expression
endingWth( String ) : Expression

1.3.3.1. Using the constraint factory of RMockTestCase
Shown here is a disection of the assertThat used in conjunction with the constraint factory.

assertThat ( true, is.eq(true) );

/1 is the equival ent of

assertThat ( true, is.TRUE );

/1 is the equival ent of

Constrai nt Factory constrai nt Factory = is;
assert That ( true, constraintFactory. TRUE );

/1 is the equival ent of

Expr essi on expression = constraint Fact ory. TRUE
assert That ( true, expression );

1.3.4. Mocking and verifying

An important component of any intercation based framework is the ability to create mocks. A mock is different from
astub in that amock can verify that what was expected to happen actually happened.

The mock test-double is very strict; it verifies that whatever messages are sent to the mock are expected and also
that all expected messages are actually received before the test is finished.

In RMock you create mocks with one of the mock(...) method.

1.3.4.1. The simplest thing that could possibly be mocked

Every test starts in the set up state. In the set up state you set up expectations. Expectations are a specification of
what you expect to happen to a mock as aresult of running the test. Lets begin by creating a mock and set up some
expectations on it:

Runnabl e runnabl e = (Runnabl e) nock( Runnabl e. cl ass) ;

Create a new mock for the interface (Runnable). The mock object is an instance of the Runnable interface (created
behind the scenes in runtime by cglib, but that is another story). We only use the interface for setting up the methods
expected to be invoked on it. This way we get a strong typing of the methods we set up, and we also get refactoring
support, e.g. if we change the name of a method, the set up also changes.

Set up a method that the mock will require being called when in verification mode. Thisway we say: "Runnable ex-
pects one and only one call to the method run() with no parameters":




RMock user guide

runnabl e. run();

startVerification();
The last statement startVerification changes the state of all mocks from recording to verifying. In an RMock test
everything above startVerification is set up code meaning that the code sets up expectations on the mocks. We finish

the test by fulfilling the expectations. In area world test the runnable would typically be passed to the actual object
we want to test as a constructor agument, via a setter or as a parameter to some method.

runnabl e. run();

As we make the invocation RMock verifies that there is a matching expectation for the call. Had there been no ex-
pectation RMock would have failed the test instantly.

After the test method has finished, all used mock objects are automatically verified according to what was set up on
them. Since the runnable object was set-up to expect one and only one call to run(), the verification in this test case
will pass.

1.3.4.2. Setting up expectations

When a mock is created it is in the set-up state. Or rather, you can only create mocks when RMock is in the set-up
state. RMock isin the set-up state in the beginning of each test-method.

Y ou can set up an expectation on the mock simply by calling the method you expect to be invoked on the mock:
Runnabl e runnabl e = (Runnabl e) nrock( Runnabl e. cl ass) ;
runnabl e. run();
RMock sees the above expectation like this
Unor dered section:root {
Unor dered section: main {
-> 0(1) runnable.run()

Unor dered section:defaults {

}
}

That means that one call to run is expected and currently zero invocations have been detected.
We change the state from set up to verify by calling RMocks startV erification method:

startVerification();
runnabl e. run();

and RMock records that one invocation has been made:
Unor der ed section: root {
Unor dered section: main {

1(1) runnabl e.run()

Unor dered section:defaults {

}




RMock user guide

Which satisfies all expectationsin thistest.

1.3.4.3. Naming mocks

As seen in the previous example RMock assigns a name to the mock automatically. Sometimes it can be useful to
assign a different name to a mock though.

RMock uses the name to identify the mock so it has to be unique. Don't worry, RMock detects and fails the test if an
id isreused.

The example below shows how two mocks are created, one with an autogenerated name and one that is explicitly as-
signed a name upon creation:

Runnabl e runnabl e = (Runnabl e) nock( Runnabl e. cl ass) ;
Runnabl e soneQ her Runnabl e = (Runnabl e) nock( Runnabl e. cl ass,
runnabl e. run();
sonmeQ her Runnabl e. run() ;
Thisiswhat RMock sees:
Unor dered section:root {
Unor dered section: main {
-> 0(1) runnable.run()
-> 0(1) soneQ her Runnabl e. run()

Unor dered section:defaults {

We fulfill the expected invocation on someOther Runnable

startVerification();
soneCt her Runnabl e. run() ;

and RMock records that someOther Runnable has all invocations fulfilled while runnableis still unsatisfied:
Unor dered section:root {
Unor dered section: main {

-> 0(1) runnable.run()
1(1) sonmeQ her Runnabl e. run()

Unor dered section:defaults {

1.3.4.4. Unexpected invocation failure
When amock receives a message that is not setup to be received that is called an unexpected invocation.

In the example below we create a mock without expectations and invoke it unexpectedly in the verify state.




RMock user guide

Li st nockedLi st = (List)nmock(List.class, "nockedList");
startVerification();

nockedLi st. add("unexpected string");
RMock reports this error condition by throwing this exception

UNEXPECTED!
No expectati on matched: nockedLi st. add(<unexpected string>)

0 expectation(s) have not yet been matched
(indicated by "->" in the |listing bel ow)

Unor dered section:root {
Unor dered section: main {

Unor dered section:defaults {

Such mocks are typically passed to or injected into other objects in order to verify that they are invoked according to
your expectations.

1.3.4.5. Unsatisfied expectation failure
When expectations are not fulfilled for the duration of the test RMock reports an unsatisfied error.

In the example below we create a mock and record an expectation that we won't fulfill in the verify state.

Li st nockedLi st = (List)nmock(List.class, "nockedList");

nockedLi st. add("expected string");
startVerification();

RMock reports this error condition by throwing this exception

UNSATI SFI ED!

1 expectation(s) have not yet been nmatched
(indicated by '->' in the listing bel ow)

Unor dered section:root {
Unor dered section: main {
-> 0(1) nockedLi st.add(eq(<expected string>))

Unor dered section:defaults {

Asyou see, RMock makes sure that everything you expect actually happens.

1.3.4.6. Modify the expectation multiplicity

8



RMock user guide

Create a new mock for the interface (Runnable) and set up the run-method as before. Lets assume we expect the
run() method to be called several times but not a particular number of times. This could be illustrated with a set up
call to run() for the number of times expected, OR we can use the modify functionality of RMock:

Runnabl e runnabl e = (Runnabl e) nrock( Runnabl e. cl ass) ;
runnabl e. run();
nmodi fy().multiplicity(expect.atLeastOnce());

Now the runnable expects at least one call to the run() method. expect is a multiplicity expectation factory available
on com.agical.rmock.extension.junit.RMockTestCase

Invoke method run() one or several times since that iswhat is expected.

runnabl e. run();
runnabl e. run();
runnabl e. run();
runnabl e. run();
runnabl e. run();
runnabl e. run();
runnabl e. run();

1.3.4.7. Expect multiplicity range

The expectation multiplicity can be modified in several ways. The expect member of RMockTest case is used to
change the expected multiplicity of an expectation. The member is an instance of

com agi cal . rnock. core.match. nultiplicity. MultiplicityFactory

and looks like this:

interface MultiplicityFactory :
{

from( int ) : MiultiplicityFactory$LimtableMiltiplicity
once( ) : Miltiplicity

atLeastOnce( ) : Multiplicity
atLeast( int ) : Miltiplicity
exactly( int ) : Miltiplicity
atMost( int ) : Miltiplicity

atMostOnce( ) : Miltiplicity

}

Besides the more obvious usages of the expect member you can define a multiplicity range like this:

Runnabl e runnabl e = (Runnabl e) nrock( Runnabl e. cl ass) ;
runnabl e. run();
modi fy().multiplicity(expect.from2).to(5));

Now the runnable expects 2, 3, 4, or 5 callsto the run() method.

To make the expectation pass we need to invoke the method at |east twice and at most five times:

runnabl e. run();
runnabl e. run();
runnabl e. run();
runnabl e. run();




RMock user guide

1.3.4.8. Modifying the arguments of the expectation

Consider the following class;

package com agi cal . rnock. doc. basi cs;
public interface Methodl nterface {

voi d oneArgunent( String string );
voi d twoArgunments( String string, Object object );

To be able to mock calls where the actual argument is hard to setup exactly, or maybe it is just irrelevant, RMock
provides several ways of modifying the expected arguments. The most allowing way is of course to allow anything:

Met hodl nterface mi = (Methodl nterface)nmock(Met hodl nterface. cl ass);

m . oneAr gunent (" Cannot set this up exactly");

nodi fy().args(is. ANYTH NG ;
As you see, we use is, the same expression factory as in the assertThat() method, to modify the argument expecta-
tions.

To fulfill the expectation we can pass anything that Java can compile to the method:

m . oneArgunent ("Any String or null");

1.3.4.9. How to modify only some arguments
Consider the same class as previoudly. If you want to change one expectation but keep the other you can do like this:
Met hodl nterface m = (Methodl nterface) nock(Met hodl nt erface. cl ass) ;
oj ect i nmportant Gbj = new bject();
m . t woAr gunent s(" Cannot setup this exactly", inportantQoj);
nmodi fy().args(is. ANYTH NG is.AS RECORDED);

To fulfill the expectation we can pass anything as the first argument, but the second needs to be as recorded:
m .t woAr gunents("Any String or null here", inportantQbj);
The setup above would be the equivalent of this:
m . t woAr gunent s(" Cannot setup this exactly either", inmportantCbj);
nodi fy().args(is. ANYTH NG ;
i.e. you can omit modifications in the end of the argument list if they are supposed to be as recorded. This setup has

exactly the same expectations on the passed arguments:

m .t woAr gunents("Any String or null here, too", inportantQbj);

10



RMock user guide

1.3.5. How to make a mock throw an exception

Mocks and intercepts can be configured to throw an exception to enable testing exception handling in the class un-
der test.

1.3.5.1. Throw an exception from a method without parameters

Consider the following source

Runnabl e runnabl e = (Runnabl e) nock( Runnabl e. cl ass, "runnabl e");
Runt i meExcepti on runti meExcepti on =
new Runti meException( "M faked exception" );
runnabl e. run();
nodi fy() .t hrowExcepti on( runti meException );
start Verification();

try {
runnabl e. run();

} catch (RuntineException actual Exception) ({
assert That (act ual Excepti on, is.same(runtinmeException));
}

Here we create a mocked Runnable and set it up to throw an exception when called. When the method is invoked,
instead of just returning, it throws the specified exception. In this example we catch it using using a standard catch-
clause, but we could just as well have used the expectThatExceptionThrown( is.instanceOf( RuntimeExcep-
tion.class) );

1.3.6. Sections

Sections can be used to ensure the call order among mocks, e.g. you might want the validation to be made before
committing data.

Most of the time you don't need sections at all but sometimes you want to specify that all or a subset of events occur
in aspecific order.

Y ou may aso want to group expectations in sectionsin order to find the expectations you look for more easily.

RMock also alows you to append expectation to a previously defined section, which enables you to easily avoid re-
petitive setup code when all you want isa small variation.

In this chapter we will show some examples of how to use sections and how they affect the way expectations are
matched.

1.3.6.1. The default sections

Sectionsis a large topic but even if you are not consiously using sections you are using them as soon as you specify
an expectation.

By default RMock specifes afew sections for you, and they look like thisin e.g. error messages:
Unor dered section:root {
Unor dered section: main {

Unor dered section:defaults {

}
}

11



RMock user guide

Y ou see the main and defaults sections that are contained in aroot section:

As you can see in the message all of these sections are unordered which means that expectations can match in any
order from those sections. We talk more about the defaults section later since it's usage is fairly advanced. The next
few sections we will focus on the main section.

1.3.6.2. Defining an ordered section

Sections are created by invoking one of the methods on the section factory:

i nterface SectionFactory :

unordered( String ) : Section
ordered( String ) : Section
}

as an argument to the beginSection()/endSection() methods of the RMockTestCase. Expectations set up within an
ordered section must be invoked in that order.

Met hodl nterface m =
(Met hodl nt er f ace) nock( Met hodl nt er f ace. cl ass,
begi nSecti on(s. ordered("ordered section"));

m");
m . oneArgunment ("First");
m . t woAr gunent s(" Second", "Any object");
}
endSection() ;
RMock first sees the expectations like this:

Unor dered section:root {
Unor dered section: main {
Ordered section:ordered section {
-> 0(1) m .oneArgunent (eq(<First>))
-> (N A 0(1) m .twoArgunent s(eq(<Second>), eq(<Any object>))

Unor dered section:defaults {

}
}

The "arrow" indicates that an expectation is not fulfilled. (N/A) indicates that the ordered section need other expect-
ations to be fulfilled before this expectation can be accepted.

After the first method isinvoked the expectations change to this state:
Unor dered section:root {
Unor dered section: main {
O dered section:ordered section {
1(1) m.oneArgunent (eq(<First>))
-> 0(1) m.twoArgunents(eq(<Second>), eq(<Any object>))
Unor dered section:defaults {
}

Now there is only one expectation left to fulfill, and after that is done it will look like this:

Unor dered section:root {

12



RMock user guide

Unor dered section: main {
Ordered section:ordered section {
1(1) m .oneArgunent (eq(<First>))
1(1) m.twoArgunents(eq(<Second>), eq(<Any object>))

Unor dered section:defaults {

}

No arrows indicate that RMock expects no more calls to its expectations.

Ordered and unordered sections can be nested to any level, but generally thereis a great chance that you have design

problemsin your code if you need to use that ability.

1.3.6.3. Using the defaults section

The default section can be used for occasions when you want to setup general expectations that are used "if all else
fails', usually to cover for small variations in general scenarios. They are appended last in the expectation list, even
if they are set up first. Usually you allow these setups to be called any number of times, including zero times.

To use this feature you have to append to the defaults section, like this:

Met hodl nterface mi =
(Met hodl nt er f ace) mock( Met hodl nt er f ace. cl ass, "mi");
appendToSecti on("defaul ts");

m . t woAr gunent s("Not so inmportant variation", ", dude!");
modi fy().multiplicity(
expect.from(0)).args(is. ANYTH NG is. ANYTH NG ;

endSection();
m . oneAr gunent ("l mportant call");

RMock will seethe set up like this:
Unor dered section:root {
Unor dered section: main {
-> 0(1) m.oneArgunent (eq(<lnportant call>))

Unor dered section:defaults {
0(*) m .twArgunent s(anyt hi ng(<nul | >), anything(<null >))

The somewhat constructed implementation might look like this:

m . oneAr gunent ("1 nmportant call");

if( SystemcurrentTineMIlis()%® == 1) {
m . t woAr gunent s(" Yada", "Yada");

}

In amore redlistic testing scenario the defaults section would be configured in the setUp() method, and the tests can

focus on clarifying the intentions for the code.
And after the run the expectations look like this.

Unor dered section:root {

13



RMock user guide

Unor dered section: main {
1(1) m .oneArgunent (eq(<Inportant call>))

Unor dered section:defaults {
0(*) m .twoArgunents(anything(<null>), anything(<null>))

}

Has the defaults section been called? It depends on the system clock. Since RMocks documentation is actually gen-
erated from live datain the test cases, it will vary from timeto time.

1.4. The different types of test-doubles
This sections contains more detailed RMock features for creating test-doubles of different kinds.
1.4.1. Fake and intercept

1.4.1.1. Default return values

We start demonstrating fakeAndlntercept by faking this interface

i nterface DembRet urnTypesl nterface :

get Bool ean( ) : bool ean

getByte( ) byt e
getShort( ) : short
getChar( ) : char
getint( ) i nt

get Long( ) | ong

get Fl oat ( )': fl oat
get Doubl e( ) : doubl e

We start the verification before using the demolnterface variable. We expect the interface to return default-values
for the different return types.

denol nterface = (DenpRet urnTypesl nterface)fakeAndl nt er cept (
DenpRet ur nTypesl nt erface. cl ass, "denolnterface");
startVerification();

assert That (denol nt er f ace. get Bool ean(), is.eq(false));
assert That (denol nterface. getByte(), is.eq((byte)0));
assert That (denol nt er f ace. get Short (), is.eq((short)0));
assert That (denol nt erface. get Char (), is.eq((char)0));
assert That (denol nterface.getlnt(), is.eq(0));

assert That (denol nt erf ace. get Long(), is.eq((long)0));
assert That (denol nterface. getFloat(), is.eq((float)0));
assert That (denol nt er f ace. get Doubl e(), is.eq((double)0));

As can be seen we don't have to setup any expectationsin order to use the faked interface.

1.4.1.2. Interception

When invocations are made on a faked and intercepted interface before startVerification is called an interception is

14



RMock user guide

made.

After startVerification is called interceptions work as expectations on mocks. That means that from then on, for in-
tercepted methods, only the explicitly expected invocations are allowed. All methods that are not intercepted still re-
turn default values as demonstrated earlier.

denol nterface = (DenmpRet urnTypesl nt er f ace) f akeAndl nt er cept (
DenpRet ur nTypesl nterface. cl ass, "denolnterface");

/1 intercept getlLong()

denol nt er f ace. get Long() ;

nodi fy().multiplicity(expect.exactly(2)).returnVal ue(4711L);

startVerification();

assert That (denol nt er f ace. get Long(), is.eq(

( )4711));
assert That (denol nt er face. get Long(), is.eq((

r

)

ong
ong) 4711));
a

/1 getlnt is not intercepted and will retu default val ue

|
I
n
assert That (denol nterface.getInt(), is.eq(0));

As seen in the code listing we can modify the interception. In this case we modied getLong() to return 4711 two
times.

1.4.2. Test doubles for classes
Thefirst rule of test-doubles for concrete classesis: don't create test-doubles for concrete classes!

That said, RMock alows it and in this section we will explain how and some specia features and tricks related to
test-doubles for classes.

There are two basic ways to create test-doubles for classes:

1. mocking - The same as mocking an interface except that instead of dynamically implementing an interface
RMock subclasses the class you want to mock. This means that final classes can't be mocked and that the construct-
or of the mocked class will need to be run. A fact that can and will eventually bite you.

Once the mock is created it works the same asif it would be a mocked interface with the limitation that final meth-
ods cannot be mocked.

2. intercepting - Intercepting a class allows you to setup expectations on some methods of a class. All other methods
work as if the class would have been created as usual with new. Intercepting also works by subclassing so the same
limitations as for mocking classes apply when intercepting them.

A typical example when intercepting can be used is to intercept a stream in order to guarantee that close is called
while the rest of the methods function normally.

1.4.2.1. Mocking a class with a default constructor
We mock an instance of java.util.ArrayList and expect clear to be called once
Li st nockedArrayList = (List)nmock(ArraylList.cl ass);
nockedArrayli st.clear();
Aswith interfaces an expectation is recorded
Unor dered section:root {
Unor dered section: main {

-> 0(1) arraylList.clear()

Unor dered section:defaults {

15



RMock user guide

1.4.2.2. Intercepting classes with a default constructor
We intercept an instance of java.util.ArrayList and expect clear to be called once

Li st interceptedArrayList = (List) intercept(Arraylist.class);
i nterceptedArraylList.clear();

As with interfaces an expectation is recorded

Unor dered section:root {
Unor dered section: main {
-> 0(1) arraylList.clear()

Unor dered section:defaults {

We fulfil the clear expectation and we add objects to the list and check it's size.

startVerification();

assert That (i nt ercept edArraylLi st.size(), is.eq(0));
i ntercept edArraylLi st.add("hell 0o");

i ntercept edArraylLi st.add("world!'");

assert That (i nt ercept edArrayLi st.size(), is.eq(2));
/1 up until here the |ist works as expected

i ntercept edArraylList.clear();

/] Since clear iIs intercepted clear is not

/] forwarded to the inplenmentation

/1 hence the list is not cleared.

assert That (i ntercept edArraylLi st.size(), is.eq(2));

Note that since clear isintercepted the call is never forwarded to the list-implementation so thelist is not cleared!

1.4.2.3. Forwarding invocations to the implementation

We use the same setup as in the previous section with one important addition: This time we modify the action of the
clear() invocation to forward to the underlying implementation.

Li st interceptedArrayList = (List) intercept(ArraylList.class);

i ntercept edArraylList.clear();
nmodi fy().forward();

Unor dered section: root {
Unor dered section: main {
-> 0(1) arraylList.clear()

Unor dered section:defaults {

We put datain the list as before:

16



RMock user guide

startVerification();

assert That (i nt er cept edArraylLi st.size(), is.eq(0));
i ntercept edArrayli st.add("hell 0o");

i ntercept edArraylLi st.add("world!'");

assert That (i ntercept edArrayLi st.size(), is.eq(2));
i nterceptedArraylList.clear();

/1 Since clear the clear invocation is forwarded
/1 to the underlying inplenentation

/1 the list size should be 0 after clear

assert That (i nt er cept edArraylLi st.size(), is.eq(0));

Thistime the intercepted call is forwarded to the list-implementation and the list is cleared.
And the invocation to clear has been registered:

Unor dered section:root {
Unor dered section: main {
1(1) arraylist.clear()

Unor dered section:defaults {

}
}

1.4.2.4. Mocking classes with different non default constructors

When mocking, intercepting or fake-and-intercepting a class that has no default constructor, RMock needs to know
what arguments to provide to the constructor, and sometimes even the constructor signature to use (more on that
later).

Consider the following class:
package com agi cal . r mock. doc. f eat ur es;

public class DifferentConstructors {
String argl = "";

oj ect arg2 - )

public DifferentConstructors(String argl) {
this.argl = argl;

ic DifferentConstructors(String argl, String arg2) {
this.argl = argil;
this.arg2 = arg2;

}

public String getString() ({
return argl + arg2;

}

}

If we want to mock it we need to provide it with some arguments, like this:

Di fferent Constructors differentConstructors =
(Di fferent Constructors)nock(DifferentConstructors.cl ass,
new Cbject {"Only first arg" },
"classWthbDifferent Constructors”);
di fferent Constructors. getString();
modi fy().forward();
startVerification();

17



RMock user guide

assert That ( different Constructors. getString(),
is.eq("Only first arg") );

RMock analyses the argument provided in the Object-array and tries to match a constructor. In this case it is easy
since thereis only one constructor taking one argument.

1.4.2.5. Mocking classes with overloaded constructors
Now consider the following class:

package com agi cal . rmock. doc. f eat ur es;

public class Overl oadedConstructors {

oj ect arg = 5

public Overl oadedConst ructors(Cbject arg) {
this.arg = "As object: " + arg;

public Overl oadedConstructors(String arg) {
this.arg = arg;
}

public Cbject getArg() {
return arg;
}

}

RMock tries to guess what constructor is intended to use by matching the types of the arguments provided, and for
most cases thisis enough, like in this case where we want to use the String constructor:

Over | oadedConstructors overl oadedConstructorsl =
(Over | oadedConstruct or s) nock( Over | oadedConstruct ors. cl ass,
new Cbject {"String arg"},
"cl assWthOver| oadedConstruct orsi1");

When the constructors are overloaded and the default selection is not what is desired, the construtor has to be poin-
ted out explicitly. Thisis done by aso providing the constructor signature as a Class array:

Over | oadedConstructors overl oadedConstructors2 =
(Over | oadedConst ruct or s) nock( Over | oadedConstruct ors. cl ass,
new Cl ass {(bj ect.cl ass},
new Cbject {"Wants to be an object"},
"cl assWthOver| oadedConst ruct ors2") ;

Note that this also works for primitives, for instance int.class, double.class etc. In the end we can verify that the in-
tended constructors actually was called:

over | oadedConstruct orsl. get Arg();

nodi fy().forward();

over | oadedConstruct ors2. get Arg();

nodi fy().forward();

startVerification();

assert That ( overl oadedConstructors2. get Arg(),
is.eq("As object: Wants to be an object") );

assert That ( overl oadedConstructorsl. getArg(),
is.eq("String arg") );

Generally, if you need to use these really detailed and advanced features on your own code, you should probably go

18



RMock user guide

over your design again.

A. Appendix
A.1. JUnit

RMock is based on the testing framework JUnit, http://www.junit.org. Currently version 3.8.1 is supported.

19



